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ABSTRACT 

In massless field theory with asymptotic freedom a spontaneous mass 

may be generated through renormalization. This mass is non-analytic 

in the coupling and via the renormalization group is connected with the 

usual p function. The development of the p function itself in renormalized 

perturbation theory provides another connection with the spontaneous mass. 

In a two dimensional field theory of four-fermion coupling which is 

asymptotically free these connections are exploited to find the. infrared 

behavior of the theory. An argument is made on how the results carry 

over to all orders of perturbation theory. 
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I. INTRODUCTION 

In renormalizable field theories with no mass scales in the Lagrangian, 

a scale is well known to be present,,nevertheless, because of the necessity 

to specify one during the renormalization proceddre. The mass scale m 

which enters the renormalized theory is constrained by the renormalization 

group to take the form’ 

g 
m = p exp - dx/P(x) , (1) 

where EJ. is the common point in momentum space where the renormalized 

Green’s functions are defined. g is the renormalized coupling constant 

which is defined at p., and p(g) is the usual renormalization group function 

which determines how g depends on t.~. 

Theories with asymptotic freedom have the feature that the mass 

scale in (1) has an essential singularity at g = 0 and will be missed at every 

order of perturbation theory. If, as in non-abelian gauge theories with few 

enough f ermions , p(g) = -bog3 + O(g5) for small g, then near g = 0 

m = p. exp - 1 /2bog2 

To the extent that one is interested in the small g behavior of such asymptotically 

free theories the presence of an exponentially small mass term is likely 

to be of little, if any, interest. After al.t,the small g regime of asymptotically 

free theories is the regime of ultraviolet behavior where presumab1.y all 

masses, not only exponentially small ones, are unimportant. 
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If one is interested in exploring the infrared behavior of these theories, 

this scenario is likely to be quite the reverse. In perturbation theory to 

every order, no mass is present, and as momentum integrations explore 

zero momentum no mass will tame the various divergences. However, 

the presence of a mass scale in the renormalized theory is sure to essentially 

alter the actual infrared behavior. In particular the function p(g) is likely 

to be significantly changed in its behavior for large g which in an asymptotically 

free theory governs infrared questions. 

In this brief note we explore the effect of non-anal,ytic terms such as 

(2) on the determination p(g). Our calculations are carried out in a massless 

fermion theory with four fermion interactions at a space and 1 time 

dimension. The idea is that the mass (1) develops since a scalar field;. 

“representing” a fermion-anti-fermion operator develops an expectation 

value in the vacuum. This mass enters the graphical determination of 

p(g) as a power series in g with m fixed. With this connection between 

p(g) and m we are able to use (1) to eliminate m and solve for p(g). We 

call this the self-consistent p function. Indeed, as expected, the small g 

behavior of the theory is unaltered. The finite g behavior is markedly 

different from what perturbation the0r.y would suggest. p(g) develops 

an infrared stable zero where the anomalous dimensions vanish. Leaning 

on the fact that in the neighborhood of this infrared stable zero the mass 

(1) is infinite, we argue that this feature of p(g) is true in all orders of 

perturbation the0r.y. 
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We turn now to the specific theory we will use. Comments on the 

lessons which we might learn from this example are left to the last paragraph. 

II. THE FOUR FERMION THEORY IN TWO DIMENSIONS 

We begin with the four fermion Lagrangian’ with N component f,ermions 

(3) 

which gives rise to the generating functional of fermion Green’s functions 

where we indicate here that we work in D dimensions to regulate divergences. 

The four fermion theory can be made a bit more familiar looking by 

introducing the scalar field ho(x) through’ 

iw [q 9 T] = ~d~od+od~oei 
/dDx{-~02/2 - go50~o+o + iTok + %qo +Tofl} . 

e 
(5) 

Now we are dealing with the coupled (ro, $J~ Lagrangian 

L? = Toi$+o - “,‘/ 2 - go~oToCo . 
0 

(6) 
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We anticipate that under certain circumstances the field o. will develop 

a vacuum expectation value so we write 

yx, = v. + x,(x) 

and have the shifted Lagrange function 

LIFO = Totip’ - govo)To - go Xo~090 - X0’/ 2 - VOX o . 

17) 

(8) 

Our immediate goal is to find under what circumstances v o $0. To this 

end we introduce a source term J x 0 0 in (8) and integrate over the fermion 

fields to define W T, Jo as 
3 

expiW q,T, Jo iI I = 

dXo(x)exp i - vojco(x) - i tr log ( i /d - govo - gox,(x)) (9 1 

+ T(iy - go(vo + xo(x)))-‘n + Joxo 
t 

I 

leading us to consider the effective Lagrangian for the scalar field in the 

absence of fermion sources 

2 

Yo(xo) = - -g -v x .o 0 - i tr log 1 - gx (x) ia’ - govo 0 0 +JX. 
00 * (10) 

Our fermion field has N components. Ln the limit N large, go2N 

fixed, the integration over fermion fields yields a very good approximation 

2 
to the whole functional W T, Jo 

I 
, when x0 is taken to be the solution 



to the classical equations of motion implied b-y (10). For our present 

purposes the large N limit is not needed. 

Now we would proceed in the evaluation of the generating functional 

W r, 7, C Jo I by expanding the path integral (9) about the extremum of the 

Lagrangian (10) treated as classical. Unfortunate1.y we are prevented 
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). from doing that by the divergences (at D = 2) of the tr log term in Yofxo 

So first we must renormalize it to account for the fermion loops we have 

evaluated. 

The theory involving scalars, x,,, and fermions, +o, defined b.y 

(8) is renormalizable in D = 2 dimensions via the resealings 

1 1 
'-2 

1 

x = xoz3-z f v=v z 03 ’ 
J=JoZ3* , 

Ic, = qJoz*+ I g=gzz+z+ . 
013 g 

These renormalization constants are determined as follows: the’ bare X 

propagator is 

require the renormalized propagator to satisfy 

D,(p’) I p2 = -p2 
= -1 ; (13) 

this determines Z3’ 
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The bare fermion propagator is 

iS o-i(P) = /@ - govo ; 

require of the renormalized propagator 
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+tr it SR -1(p) 
I 

= I 
QP p2 = -p2 

this determines Z1. 

The bare two-fermion-scalar vertex function is 

To = -i go/ (2~) 
D/2 

; 

require of the renormalized vertex runction 

tr l?(pi) 
I 

= -ig tr A/ (27~) D/2 , 

pi2 = -p2 
, 

imens this gives Z . 
g 

tr i is the trace of the unit matrix in D d ions. 

At the level of including only one fermion loop which is what the 

integration over fermion degrees of freedom means, we have 

. f 

z1 
=z =I ) 

g 

and 

(14) 

(15) 

(16) 

(17) 

(18) 

2 
z3 -~= -+ + Ngo2KD(D - l)lY(l - %) 

2 2 
v. + y(1 - y)p 

2 D/Z-l 1 (19) 
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. 

This expression for Z3 arises from the one loop correction to the x 

propagator shown in Figure 1. 

Now we are prepared to return to the effective Lagrangian (10) 

which has fermion degrees of freedom integrated out. As noted we wish 

to treat this as a classical Lagrange function. So we seek a constant 

(slowly varying really) x such that 

idi? ax I = 0 
X =o 

which says that <x> = 0, and 

a2y -zo 

&X 
2 

x =o 

which says the effective potential, - 9 , is a minimum. For constant x , 

the renormalized L? is 

(21) 

(22) 
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d -I- N g2KD(D - 
D/2 - 1 

dy [ g2v2 + ~(1 - y)p2 I 

- (gdD - 2 

v -t l\lg2vKDT(1 

1 
DfZ- I 

dy + ~(1 - y)p2 I 

+ NKD@V) Dr(*;D'2++>D-(1+++D(DZ-1' 5)) +Jx . (23) . 

The condition <x> = 0 means 

TK Dr(2 - D/2) 
I 

1)’ + ~(1 - y) 1 D12 - 1 

2-D dy - F(X) D-2 =J 

II 
t-24 ) 

where the dimensionless coupling X = N’g(p) D/2 - 1 has been introduced and 

F(X) = y . 

The stability condition (22) requires the following, when the source J = 0: 

If v = 0, when J = 0, that is, no vacuum expectation value for the original 

(25) 

scalar field 
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If TL2 > x2 CRITICAL’ 
v#O, whenJ=O. ForD=2+~, X2CRITICAL=~e, 

This is just a reminder of the known fact that in D = 2 + E, there is a phase 

transition at a critical value of X2 which is order E. Since we are interested 

in D = 2, X2 CRITICAL 
= 0; so we always have v f 0. 

Now we come to the connection of these formulae, which are essentially 

the determination of the fermion mass mF = gv = yF(h), with the renormalization 

group function p(X). Note that 

so 

which translates to 

-2 w = govoz*zg ’ 

2 8 
tJ.- 

atLz 
gv zi -i z g 

31 go’ 
v. fixed 

= 0 

;+P(X)$-y,+y F(X) = 0 , g 1 
where 

28. 
3 = t-l -+og z1 

3-l I v fixed 
go’ 0 

2 a 
%t 

= P -$og z 
g 

I 

> 
al-l 

go’ 
v. fixed 

(27) 

(28 ) 

(29) 

(30) 

(31) 



-II- FERMILAB-Pub-771 25-THY 

and 

so 

ph.) = p2% x 
ap I go, v. fixed 

log F(X) = /“h [Yi-Yg-g! * 

(32) 

(33 1 

At the present level of approximation y1 = y 
g 

= 0, so we have the connection 

between F(X) and p(X) we seek 

-2 d log F(X) = p(x)-l 
dX . (34) 

This is the realization in this problem of the connection of the “spontaneous” 

fermion mass pF(X) with p( X). As suggested in the introduction the 

connection of F(X) and p(X) and the determination of F(X) by the stabi1it.y 

arguments (22) and the vacuum expectation value condition Kx> = 0 

(or <a> = v + 0) is the key relation in this paper. 

A slightly different view of the F(X), p(X) relation 

evaluating p(X) from (32) which to the present accuracy 

is gotten b,y direct1.y 

is 

1 

(D - -  

P(X) = 4 
2) 

x- 
k3(D 1)  

K rf2 
2  2) dyy (1 -,y) 

_ 2 D 2 (Xl + ye - y) 1 2-D/2 * (35) 

This is the expansion of p(X) in X for fixed F(X) (or fermion mass if you 

like). AlI the subtle non-analytic behavior: in X is in the function F(X). 

The connection (34) and (35) between F(X) and p(X) may be integrated to 

give at D = 2 
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which, to repeat once more, is the condition from (24) that v + 0, when 

J = 0. 

From this equation for F(X) we learn that for small X 

F(X) - exp - r/X2 , 
X--O 

(36 ) 

(37) 

and, of course, 

3 2iFJ x2 
P(X) = -$y +Xe- + . .* , (38) 

X-0 

showing the explicit non-analytic behavior in X. As X increases, however, 

one finds that near X2 =l-r 

F’(X) - x 
x2 

1 

*Tr 
( ,12(Tr - x2,>’ 

and F(X)’ is complex for 2 h > TT indicating another phase (Figure 2). 

Near X2 = r, p(X) behaves as 

, 

indicating it has an infrared stable zero (Figure 3). In the neighborhood 

(39 1 

(40) 

of X2 = 7~ we find for the anomalous dimension of the x field 
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(41) 

(42 ) 

So at 1’ = n the fermion mass has become infinite; the theor-y is infrared 

stable; and canonical in the sense that all anomalous dimensions vanish. 

III. DISCUSSION 

The most immediate question one may ask about the present calculation 

is to what extent it is limited to the approximation of one fermion loop 

or equivalently to lowest order perturbation theory in X for p(X) with 

F(X) fixed. Since F(X) becomes infinite at X2 = TT, higher numbers of fermion 

loops are more and more strongly suppressed for this coupling. At any 

order of perturbati0.n theory in X with F(X) fixed, then, p(X) will vanish 

at X2 = TT. Of course, the behavior at X s 0 will also remain unaltered. 

Between X = 0 and X2 = n the detailed shape of p(h) will be changed. 

Perhaps it is worthwhile to close with a repetition of the idea of the 

self-consistent p function. Ln a massless the0r.y with asymptotic freedom 

there ma’y well be mass generation through renormalization. This mass 

must take the form g 
m(g) = p exp - dx/ P(x) 
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as dictated by the renormalization group. NOW g(g) itself is determined 

by renormalized perturbation theory which is an expansion in g with fixed 

m(g 1. This connection of m(g) and p(g) determines a self-consistent p 

function. For small g, (3(g) must be exactly the familiar perturbative 

result and m(g) -+ 0 rapidly. This is because small g governs the ultraviolet 

behavior and masses are not important when they are smooth enough. 

For g away from zero, order unity or even large, one is probing the 

infrared region and masses are certainly important. We have seen in 

this note an explicit example of this phenomenon. 

Clearly the most interesting as,ymptotically free theory is massless 

&CD. One may expect to be able to formulate a self-consistent p function 

there as well. Unfortunately the operator whose expectation value signals 

mass generation must be composite and thus in a technical sense the problem 

is certainly more difficult than the example treated here. One may well 

imagine, however, that the explicit presence of exp - i/g2 terms in 

non-abelian gauge theories studied in expansion around instantons 
3 

is 

a signal of just the kind of mass generation one needs to formulate a 

self-consistent p function scheme. 
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FIGURE CAPTIONS 

Fig. 4: The one fermion loop approximation to the scalar propagator. 

This determines Z3. 

Fig. 2: The behavior of the function F(X)2 as a function of X at 

D = 2. The spontaneous fermion mass is pF(X). 

Fig.. 3: The function p(X) for the four fermion coupling model at 

D = 2. The infrared stable zero at X2 = r arises from the 

self -consistent p-function. 
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